12.40

12,41

12.42

example, describe how the window scale
option used in the TCP segment header can
overcome this problem.

The computation of the RTO for a connec-
tion using the method in Exercise 12.24
required the RTT to be computed for every
data segment. Explain how, with a large
window size, this can lead to a poor estimate
of the RTT.

Hence, with the aid of the time sequence
diagram shown in Figure 12.17, explain how
the number of updates can be reduced by
using a time-stamp option field. Include in
your explanation the use of the time-stamp
value and timestop echo reply fields and how the
receiving TCP overcomes the fact that not all
segments are acknowledged.

Explain the principles behind:

(i) the SACK-permitted option

(ii) how protection against wrapped
sequence numbers can be overcome by
using the time-stamp option.

Use the time sequence diagrams associated
with the connection established (Figure 12.5)
and connection close (Figure 12.12) proce-
dures to follow the state transitions that occur
at the client and server sides shown in Figure
12.18(a} and (b) respectively.

Section 12.4

12,43

12.44

What are the main differences between UDP
and TCP?

By means of a diagram, show the socket inter-
face associated with UDP in relation to a user
AP. Include in your diagram the send and
receive buffers associated with the socket and

851

Exercises

the input and output buffers associated with
the UDP entity.

1245 Show on a diagram a typical sequence of
socket primitives that are issued at both the
sending and the receiving sides to:

(i) establish a socket connection,

(ii} exchange a single UDP datagram,

(iii) release the socket connection.

Identify the main parameters associated with
each primitive.

12.46 In relation to the UDP datagram format
shown in Figure 12.20(b), explain how the
checksum is corrupted.

State why the maximum size of UDP data-
gram is often less than the theoretical
maximum.

Section 12.5

12.47 Describe the use of the RTP protocol and, by
means of a diagram, show its position in rela-
tion to the TCP/IP protocol stack.

12.48 In relation to the RTP packet format shown
in Figure 12.21(b), explain the meaning and
use of the following fields:

(i) CCand CSRC,

(ii) M and payload type,
(iii) sequence number,
(iv) tme-stamp,

(v) SSRC.

12,49 Describe the use of the RTCP protocol and,
by means of a diagram, show its position in
relation to the TCP/IP protocol stack.

12.50 ldentify and give a brief explanation of the

four main functions performed by RTCP.
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13.1 Introduction

Having described the various protocols that are used to transfer information
across a network/internet we are now in a position to describe a selection of
the standard protocols associated with various applications. Before we do this,
however, it will be helpful if we first build up an understanding of some of the
support functions that are used with many of these application protocols.

For example, if you were asked to write an application program to
process a set of fault reports that have been gathered from the various items
of computer-based equipment that make up a network - switching
exchanges, bridges, gateways, routers, and so on — then you would, of course,
want to use a suitable high-level programming language. Each report would
then be declared in the form of, say, a (record) structure with the various
fields in each record declared as being of suitable types. However, although
the data types used may be the same as those used by the programmer who
created the software within each item of equipment, the actual representa-
tion of each field after compilation may be quite different in each
equipment. For example, in one computer an integer type may be repre-
sented by a 16-bit value while in another it may be represented by 32 bits.
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Fven if the two computers both use 16 bits to represent an integer type, the
position of the sign bit or the order of the two bytes that make up each inte-
ger may still be different. Similarly, the character types used in different
computers also differ. For example, EBCDIC may be used in one and
ASCII/IA5 in another. The representation of the different data types are thus
said to be in an abstract syntax form.

The effect of this is that when we pass a block of data — for example, hold-
ing a set of records — from one computer to another, we cannot simply
transfer the block of data from one computer memory to that of the other
since the program in the receiving computer may interpret the data incor-
rectly such as on the wrong byte boundaries. Consequently, when we transfer
data between computers, we must ensure that the syntax of the data is known
by the receiving machine and, if this is different from its local syntax, convert
the data into this syntax prior to processing.

One approach to this problem is to define a data dictionary for the com-
plete (distributed) application which contains an application-wide definition
of the representation of all the data types used in the application. If this rep-
resentation is different from the local representation used by a machine, we
must convert all data received into its local syntax prior to processing and
convert it back into the standard form if it is to be sent to-another machine.
The form used in the data dictionary is known as the concrete or transfer
syntax for the application.

This is a common requirement in many distributed applications, espe-
cially when computers and other items of equipment from different
manufacturers are involved. Hence to meet this requirement, an interna-
tional standard has been defined for representing information that is to be
transferred between (possibly dissimilar) computers and other items of com-
puter/microprocessor based equipment. This is called abstract syntax
notation one (ASN.1) and is defined in IS 8824. As we shall see, this com-
prises both an abstract syntax for defining the data types associated with a
distributed application and also a transfer syntax for representing each data
value during its transfer over the network.

A second requirement that relates to many distributed applications is net-
work security. Increasingly, people are using networks like the Internet for
banking, home shopping, and many other applications that involve the trans-
fer of sensitive information such as credit card details over the network. As
the knowledge of computer networking and their protocols has become
more widespread, so the threat of intercepting and decoding the data within
messages during its transfer across the network has increased. To combat
these threats, a number of security techniques have been developed which,
when combined together, provide a high level of confidence that any infor-
mation that is received from the network has come from the stated source
and has not been read or changed during its transfer over the network. In
this chapter, we shall present an overview of both these topics and, in the fol-
lowing two chapters, some examples of applications that use them,
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13.2 ASN.1

ASN.1 is concerned with the representation (syntax) of the data in the mes-
sages associated with a distributed/networked application during its transfer
between two application processes (APs). The aim is to ensure that the mes-
sages exchanged between the two APs have a common meaning — known as
shared semantics — to both processes. The approach adopted is shown in
Figure 13.1. :

With any distributed application all APs involved must know the syntax of
the messages associated with the application. For example, if the application
involves customer accounts, the APs in all systems that process them must be
written to interpret each field in an account in the same way. However, as we
indicated earlier, the representation of data types associated with a high-level
programming language may differ from one computer to another. To ensure
that data is interpreted in the same way, before any data is transferred
between two processes it must be converted from its local (abstract) syntax
into an application-wide transfer syntax. Similarly, before any received data is
processed, it must be converted into the local syntax if this is different from
the transfer syntax.

Two questions arise from this: firstly, what abstract syntax should be used,
and secondly, what representation should be adopted for the transfer syntax.
One solution to the first question is to assume that all programming is done
in the same high-level programming language and then to declare all data
types relating to the application using this language. However, different pro-
grammers may prefer to use different languages. Also, the question of the
transfer syntax is still unanswered.

As the representation of data in a distributed application is a common
requirement, ISO (in cooperation with ITU-T) has defined ASN.1 as a gen-
eral abstract syntax that is suitable for the definition of data types associated
with most distributed applications. An example application that uses ASN.1 is

Host Host

Data in an agreed abstract syntax
{e.g. lype character, inleger eic.}

Data in an ogreed transfer/concrete
syniax |e.g. type, length, valuel

IP network/internet

_f ]

Figure 13.1 ASN.l: abstract and transfer/concrete syntax relationship.
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the simple network management protocol which we describe in Section 14.7
of the next chapter. As the name implies, the data types associated with ASN.1
are abstract types. Hence, in addition to the abstract syntax definition, an
associated transfer syntax has also been defined.

As an aid to the use of ASN.1, a number of companies now sell ASN.1
compilers for a range of programming languages. There is an ASN.1 .com-
piler for Pascal and another for C. The general approach for using such
compilers is shown in Figure 13.2.

Firstly, the data types associated with an application are defined using
ASN.1. For example, if two APs are to be written, one in Pascal and the other
in C, the ASN.1 type definitions are first processed by each compiler. Their
output is the equivalent data type definitions in the appropriate language
together with a set of encoding and decoding procedures/functions for each
data type. The data type definitions are linked and used with the correspond-
ing application software, while the encoding and decoding procedures/
functions are used as library procedures/functions: each encoding proce-
dure/function is used to encode the related value into its corresponding
transfer syntax ready for transferring to the destination AP and each decod-
ing procedure/function is used to decode a received value from its transfer
syntax into its local syntax prior to processing.

As we shall see, the output of each encoding procedure/function is in
the form of a byte — normally referred to as an octet — string comprising an
identifier, the length (in bytes) of the encoded value, and the encoded value.
The identifier is then used to determine the type of decoding procedure/
function that should be carried out on the value.

Application data type definitions in ASN. 1
A,

e N

Y h g
Data type definitions Encoding and deceding
in language X procedures for each daka type
in language X

Figure 13.2 ASN.1 compiler function.
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13.2.1 Type definitions

The type definitions used with ASN.1 are defined in IS 8824. They are similar
to those used with most high-level programming languages for defining the
data types associated with the variables used in a program: as each variable is
declared, the data type associated with it is also defined. Then, when a value
is assigned to the variable, its syntax is of the defined type.

ASN.1 supports a number of type identifiers, which may be members of
the following four classes:

m UNIVERSAL: the generalized types such as integer;

B CONTEXT-SPECIFIC: these are related to the specific context in which
they are used;

B  APPLICATION: these are common to a complete application;

m PRIVATE: these are user definable but must begin with an upper-case
letter.

The data types associated with the UNIVERSAL class may be either primitive
{simple) or constructed (structured). A primitive type is either a basic data
type that cannot be decomposed — for example, a BOOLEAN or an INTE-
GER - or, in selected cases, a string of one or more basic data elements all of
the same type — for example, a string of one or more bits, octets, or
IA5/graphical characters. The keywords used with ASN.1 are always in upper-
case letters and the primitive types available include:

UNIVERSAL (primitive): BOOLEAN
INTEGER
BITSTRING
OCTETSTRING
REAL
ENUMERATED
TA5String /DisplayString
NULL
ANY

The names of variables and constants may consist of upper and lower-
case letters, digits, and hyphens but must begin with a lower-case letter. Some
examples of simple types are shown in Figure 13.5(a).

As with a program listing, we may insert camments at any point in a line;
the comments start with a pair of adjacent hyphens and end either with
another pair of hyphens or the end of a line. The assignment symbol is ::=
and the individual bit assignments associated with a BITSTRING type are
given in braces with the bit position in parentheses. A similar procedure is
used for the ENUMERATED type to identify the possible values of the vari-
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{a) married ::= BOOLEAN - frue or false
yrsWithCompany ::= INTEGER
accessRights ::= BITSTRING{read(0), write[ 1]}
PDUContents ::= OCTETSTRING
name ::= |A5S5tring
pi = REAL -- mantissa, base, exponent
workDey ::= ENUMERATED(monday(0), tuesday(1) ... friday(4]}

(b) persornelRecord ;= SEQUENCE(
empMNumber INTEGER,
name |A5Sting,
yrsWithCompany INTEGER
married BOOLEAN}

¢}, personnelRecord =  record
empNumber = integer,
name = array [1..20) of char,
yrsWithCompany = infeger,
married = boolean
end;

(<) personnelRecord ::= SEQUENCE{
empNumber [APPLCATIONT1] INTEGER,
name 1] IAS5tring,
yrs¥WithCompany [2] INTEGER,
married [ 3] BOOLEAN])

{d) personnelRecord := SEQUENCE]
empNumber [APPUCATIONT] INTEGER,
name [1] IMPLCIT |AS5String,
yrsWithCompany [2] IMPLICIT INTEGER,
married [3] IMPLCIT BOOIEAN}

Figure 13.3 Some example ASN.1 type definitions: (a) simple types;
(b) constructed type; (c) tagging; {d) implicit typing.

able. INTEGER types are signed whole numbers of, in theory, unlimited mag-
nitude while REAL types are represented in the form {m, B, e} where m =
mantissa, B = base, and e = exponent, that is m x B,

A NULL type relates to a single variable and is commonly used when a
component variable associated with a constructed type has no type assign-
ment. Similarly, the ANY type indicates that the type of the variable is defined
elsewhere.

A constructed type is defined by reference to one or more other types,
which may be primitive or constructed. The constructed types used with
ASN.1 include the following:

B UNIVERSAL (constructed) SEQUENCE: a fixed (bounded), ordered list
of types, some of which may be declared optional, that is, the associated
typed value may be omitted by the entity constructing the sequence;
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B SEQUENCEOF: a fixed or unbounded, ordered list of elements, all of
the same type;

B SET: a fixed, unordered list of types, some of which may be declared
optional;

B SETOF: a fixed or unbounded, unordered list of elements, all of the
same type;

® CHOICE: a fixed, unordered list of types, selected from a previously
specified set of types.

An example of a constructed type is shown in Figure 13.3(b}, together
with the equivalent type definition in Pascal for comparison purposes.

To allow the individual elements within a structured type to be refer-
enced, ASN.1 supports the concept of tagging. This involves assigning a tag or
identifier to each element and is analogous to the index used with the array
type found in most high-level languages.

The tag may be declared to be one of the following:

B CONTEXT-SPECIFIC: the tag has meaning only within the scope of the
present structured type;

8 APPLICATION: the tag has meaning in the context of the complete
application (collection of types);

® PRIVATE: the tag has meaning only to the user.

An example of the use of tags in relation to the type definition used in
Figure 13.3(b) is given in part (c). In the example, we assume that empNumber
is used in other type definitions and hence is given a unique application-wide
tag. The other three variables need be referenced only within the context of
this sequence type.

Another facility supported in ASN.1 is to declare a variable to be of an
implied type, using the keyword IMPLICIT which is written immediately after
the variable name and, if present, the tag number.

Normally, the type of a variable is explicitly defined, but if a variable has
been declared to be of an IMPLICIT type, then the type of the variable can be
implied by, say, its order in relation to other variables. It is used mainly with
tagged types since the type of the variable can then be implied from the tag
number. An example is shown in Figure 13.3(d}, where the types of the last
three variables can be implied — rather than explicitly defined — from their tag
number. The benefit of this will become more apparent when we discuss the
encoding and decoding rules associated with ASN.1 in the next section.

To illustrate the use of some of the other features and types associated
with ASN.1, let us consider the use of ASN.1 for the definitions of the proto-
col data units {PDUs) associated with a protocol. The PDU type definitions
discussed so far are all defined in the form of an ordered bit string with the
number of bits required for each field and the order of bits in the string
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defined unambiguously. This ensures that the fields in each PDU are inter-
preted in the same way in all systems.

To minimize the length of each PDU, many of the fields have only a few
bits associated with them. With this type of definition, it is not easy to use a
high-level programming language to implement the protocol since isolating
each field in a received octet string — and subsequent encoding — can involve-
complex bit manipulations.

To overcome this problem, the PDU definitions of all of the protocols
defined by ISO are now defined using ASN.1. By passing each PDU definition
through an appropriate ASN.1 compiler, the type definitions of all the fields
in each PDU are automatically produced in a suitable high-level language
compatible form. The protocol can be written in the selected language using
these type definitions. Again, however, since the fields are now in an abstract
syntax, the corresponding encoding and decoding procedures produced by
the ASN.1 compiler must be used to convert each field into/from its transfer
syntax when transferring PDUs between two peer protocol entities.

An example of the use of ASN.1 for the definition of a PDU is shown in
Figure 13.4. This relates to an ISO application protocol called file transfer
access and management (FTAM) which is sometimes used instead of FTP.

The complete set of PDUs relating to a particular protocol entity is
defined as a module. The name of a module is known as the module defini-
tion. In the example of Figure 13.4, this is ISO8571-FTAM DEFINITIONS. It is
followed by the assignment symbol (::=); the module body is then defined
between the BEGIN and END} keywords.

Following BEGIN, the CHOICE type indicates that the PDUs used with
FTAM belong to one of three types: InitializePDU, FilePDU, or BulkdataPDU. A
further CHOICE type indicates that there are six different types of PDU asso-
ciated with the InitializePDU type: FINITIALIZErequest, FINITIALIZE response,
and so on. Note that these are tagged so that they can be distinguished from
one another. Also, since the tags are followed by IMPLICIT, the type of PDU
can be implied from the tag field, that is, no further definition is nceded,
such as a PDU type. Note that since the FINITIALIZErequest PDU is always the
first PDU received in relation to FTAM, it is assigned an application-specific
tag number of 1. The remaining PDU types then have a context-specific tag;
note that the word CONTEXT is not needed as these types will have meaning
in the context of FTAM. The definition of each PDU is then given and, in
Figure 13.4, the FINITIALIZErequest PDU is defined.

The SEQUENCE structured type is used in this definition to indicate that
the PDU consists of a number of typed data elements, which may be primitive
or constructed. Although with the SEQUENCE type the list of variable types is
in a set order, normally the individual elements are (context-specifically)
tagged since, as we shall see in the next section, this can lead to a more effi-
cient encoded version of the PDU. The first element, protocolld, is of type
INTEGER and is set to zero, which indicates it is FTAM (iso FTAM).
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ISO857 1-FTAM DEFINITIONS =

BEGIN

POU = CHOICE {
InitializePDU,
FilePDUL!,
BulkdotoPDU

}
InitighzePDU = CHOICE |
[APPUCATION 1 IMPLICIT FINITIALIZErequest,

[n IMPUCTT FINITIALZ Eresponse,
[21 IMPLCIT FTERMINATErequest,
[3] IMPLICIT FTERMINATEresponse,
[4; IMPLCIT FUABORTrequest,

[5] IMPUCIT FPABORTresponse

}

FINITIALIZErequest n= SEQUENCE §
profecolid [O] INTFGER { isoFTAM (0} ),
versionNumber [ 1] IMPLICIT
SEQUENCE { major INTEGER,
minor INTEGER),
— = initialfy { major O, minor O}
servicelype [ 2] INTEGER { refiable [0),
vser correciable (1))
serviceClass [ 3] INTFGER { transher [O),
access [ 1],
management | 2]}
functionainits [4] BITSTRING { read (0),
write [ 1),
fileAccess | 2),
limitedf ileManagement |3),
enhancedfileManagement 14),
grouping (3],
recovery (6},
restariDatalransfer | 7] )
attributeGroups [ 5} BITSTRING {storage [0,
security [ 1) ]
rollbackAvailability [ 6] BOOIEAN DEFAULT FALSE,
presentationContextiName [ 7] IMPLCIT ISO&465king { 15088227,
identifyCfinifiator [ 8] 1506465ting OPTIONAL
currentAccount [ 9] 1506465king OPTKONAL
filestorePassword [ 10] OCTETSTRING OPTIONAL
checkpointWindow [ 111 INTEGER OPTIONAL |

FINITIA[IZEresponse = SFQUENCE {

END

Figure 13.4 ASN.1 PDU definition example.
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The second element, versionNumber, is defined as a SEQUENCE of two
INTEGER types — major and minor. As before, the use of the word IMPLICIT
means that the type (SEQUENCE) can be implied from the preceding tag
field and need not be encoded. A comment field is used to indicate the initial
setting of the two variables. The next two elements are both of type INTEGER,
the possible values of each are shown in the braces.

The next element, functionallinits, is of type BITSTRING; the eight bits in
the string are set to 1 or 0 depending on whether the particular unit is (1} or
is not (0) required. Finally, some of the later elements in the sequence are
declared OPTIONAL, which means that they may or may not be present in an
encoded PDU. Since the individual elements in the PDU have been tagged,
the receiver of the PDU can determine if the element is present or not. The
keyword DEFAULT has a similar meaning except that if the element is not
present in a PDU, it is assigned the default value.

Finally, there is a primitive type that has been defined to enable an object
definition to be unique within a wider context than its current definition. For
example, as we shall expand upon in Section 14.7.1, within the context of
network management, the various managed objects associated with a network
- a bridge, a router, a protocol, and so on - are each assigned an OBJECT
IDENTIFIER that is unique within the context of all the different network
types — PSTN/ISDN/Internet/and so on.

Within any one of these networks there is a host of multinational vendors
that supply equipment and software to be used within that network. Also,
many vendors supply equipment that is used in a number of these networks
In order to ensure that the management information produced by a particu-
lar piece of equipment or software relates to a specific network type, the
various international standards bodies have defined an object naming tree so
that the set of object identifiers associated with each of these network types
are unique within a global context.

Transfer syntax

As we indicated earlier, all the ASN.1 data types associated with an application
have an abstract syntax. This means that their values may be represented in
different ways within the various computers/items of equipment involved in
the application. Hence as we saw in Figure 13.1, before each value associated
with the various data types used within an application is transferred from one
AP to another, it is first encoded into a standard transfer — also called con-
crete — syntax. Similarly, on receipt of each encoded value, the destination AP
first decodes each value into its local {abstract) syntax before it is processed.
In this section we describe the principles behind both the encoding and
decoding operations.
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Encoding

The standard representation for a value of each type is a data element
comprising the following three fields:

B identifier, which defines the ASN.1 type;
8 length, which defines the number of octets in the contents field;

W contents, which defines the contents (which may be other data elements
for a structured type).

Each field comprises one or more bytes/octets. The structure of the identifier
octet is shown in Figure 13.5 and example encodings of different typed values
are given in Figure 13.6. To help readability, the content of each octet is repre-
sented as two hexadecimal digits and the final encoded value (always in the
form of a string of octets) is given at the end of each example. If the number

Br 87654321

|——— Tag: 0O__30

1 = Boolear lype

? = Integer type

3 = Bitstring type

4 = Octetstring type
5 = Null type

@ = Real type

18 = Enumerated type

16 = Sequence and sequencect types

17 = Set and sefof types

18-22, 25 = Allemnative characler set string types [|A5/150 646, etc )
23-24 = Time types
>30 = All five tag bits setto 1 and a second octet used
Type: O = Primitive
1 = Constructed

Class: 00 = Universal
01 = Application
10 = Context specific
11 = Private

Note: The null type is used o indicate the absence of an element in @ sequence.
The: twa time types are used fo specily time in a standardized way os @ sting of
A5 /1SC 646 characiers, For example:

YY MM DD hh mm s
00 09 30 20 45 158 = current time

Figure 13.5 ASN.1 encoding: identifier hit definitions.
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of octets in the contents field exceeds 127, the most significant bit of the first
length octet is set to 1 and the length is defined in two (or more}) oclets.

In Figure 13.6(a), the identifier 01 (Hex) indicates that the class is UNI-
VERSAL (bits 8 and 7 = 00), it is a primitive type (bit 6 = 0), and the tag (bits
1 through 5) is 1, thus indicating it is Universal 1 and hence BOOLEAN. The
length is 01 (Hex) indicating that the content is a single octet. TRUE is
encoded as FF (Hex) and FALSE as 00 (Hex).

{a) BOOWEAN - UNIVERSAL |

e.g., Employed ;1= BOOLEAN

— — assume frue

Identifier =01 [Hex} — = Universal |
length =01

Contents = FF

ie., 01 O1 FF

INTEGER — UNIVERSAL 2

e.g, RetCount = INTEGER
— — gssume = 29 |decimal}

Identifier =02 — — Universal 2
length = Ol

Contents = 1D - - 29 decimal
e, 02 01 1D

BITSTRING - UNIVERSAL 3

e.q., Functionailnits ::= BITSTRING {read [0}, write | 1), fleAccess |2}
~ — gssume read only is required

Identifier =03

length =0l

Contents = B0 - - read only = 1000 0000
e, 03 01 8O

UTCTime — UNIVERSAL 23

e.g., UTCTime = [UNIVERSAL 23 IMPLICIT 1ISOGA465ing
— = assume 2.58 p.m on Sth November 1999 = 9 11 05 14 58

Identifier = 17 {Hex] — — Universal 23
length = 0A

Contents = 38 3¢ 31 31 30 35 31 34 35 38

ie. 17 0A 38 39 31 31 30 35 31 34 35 38

Figure 13.6 ASN.1 encoding examples: (a} primitive types;
(b) constructed type; (c) use of implicit tag.



864

Chapter 13 Application support functions

{b) SEQUENCE/SEQUENCEQF — UNIVERSAL 16

e.g., file = SEQUENCE [userName [A55iing, contents OCTFTSTRING)
- - assume userName = "FRED” and contents = OF 27 F4  Hex

Identifier = 30 {Hex} - - Constucted, Universal 16
lengh =0B - = Decimal 11
Contents = Identifier = 16 - — Universal 22

length =04

Contents = 46 52 45 44

Identifier = 04 - — Universal 4

length =03

Contents = OF 27 E4

ie, 30 OB 16 04 46 52 45 44 04 03 OF 27 E4

{c) Togging/IMPLICIT

e.g., UserlName .= SET {surname (O] IMPLCIT 150O6465ing, password [ 1] ISC&465king §
—— assume surname = “BULL" and password = "KING”

‘dentifier = 31 - - Constructed, Universal 17
length =0E —— Decimal 14
Contents = identifier = 80 -~ Confextspecific O = surname
tength =04
Contents = 42 55 4C 4C
identifier = A) - - Contextspecific 1 = password
length = 06
Contents = identifier = 16 —~ Universal 22
length =04

Contents = 48 49 AE 47

i.e, 31 OF 80 O4 42 55 4C 4C Al 06 16 04 4B 49 4E 47

Figure 13.6 Continued

Integer values are encoded in 2s-complement form with the most signifi-
cant bit used as the sign bit. Thus, a single octet can be used to represent a
value in the range -128 to +127. More octets must be used for larger values.
Note, however, that only sufficient octets are used to represent the actual
value, irrespective of the number of bits used in the original form, that is,
even if the value 29 shown in Figure 13.6(a) is represented as a 16-bit or 32-
bit integer locally, only a single octet is used to represent it in its encoded
form. Similarly, if the type is BITSTRING, the individual bits are assigned
starting at the most significant bit with any unused bits set to zero.

Two examples showing the encoding of constructed types are given in
Figure 13.6(b) and (c). With a variable of type SEQUENCE (or
SEQUENCEOQF}), the identifier is 30 (= 0011 0000 binary). This indicates that
the class is UNIVERSAL (bits 8 and 7 = 00), it is a constructed type (bit6=1),
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and the tag equals 16 (bit 5 = 1 and bits 4 through 1=0). Similarly, the identi-
fier with a SET (or SETOF) type is 31, indicating it is UNIVERSAL,
constructed with tag 17.

Note also that in Figure 13.6(c), the o fields in the type UserName have
been tagged as context-specific - [0] and 11]. The two identifiers associated
with these fields are 80 (= 1000 0000 binary) and Al (= 1010 0001 binary),
respectively. The first indicates that the class is context-specific (bits 8 and 7 =
10), it is a simple type {(bit 6 = 0), and the tag is 0. However, the second is
context-specific, constructed, and the tag is 1. This is because the first
contextspecific tag has been declared IMPLICIT, in which case the type field
can be implied from the tag. However, with the second, the type field must
also be defined so two additional octets are required. Note that in all cases
the resulting octet string is transmitted in the order left to right.

In order to illustrate a more complete definition, an example PDU
encoding is given in Figure 13.7. The PDU selected is FINITIALIZEvequest,
which we defined earlier in its ASN.1 form in Figure 13.4. The actual values
associated with the PDU are defined in Figure 13.7(a) while Figure 15.7(b)
shows how the selected values are encoded. Typically, the various fields in the
PDU are abstract data types associated with a data structure in a progranm.
However, after encoding, the PDU consists of a precisely defined string of
octets which, for readability, are shown in hexadecimal form. The complete
octet string is then transferred to the correspondent (peer) FTAM protocol
entity where it s decoded back into its {local) abstract form.

Decoding

On receipt of the encoded string, the correspondent AP performs an associ-
ated decoding operation. For example, assuming that the received octet
string relates to the PDU shown in Figure 13.7, the leading octet in the string
is first used to determine the type of PDU received - Application-specific

(@) FINMAlZErequest = { protocolid = G,

versionNumber {major = 0, minor = 0}

servicelype = 1,

serviceClass = 1,

funchionalUnits {[read = O, wiite = 1, fileAccess = 2,
limitedFileManagement = 3
enhancedFileManagement = 4,
grouping = 5, recovery = &,
restortDataTransfer = 7

attributeGroups {storage = O, security = 1)

rollbackAvailability = T,

PresentationContextiName = “1S08822"}

Figure 13.7 Example PDU encoding: (a) PDU fields and their contents;
(b) encoded form. :
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{b) Identifier = &) - - Applicofionspecific 1 = FINITIALZErequest
lengh = 31 — — decimal 49
Contents = Identifier = AQ - - Contextrspecific O = protocolid
length =03
Contents = Identifier = 02 — — Universal 2 — INTEGER
length = Ol
Contents = 00 - — isof TAM
Identifier = Al ~— Contextspecific 1 = version™Number
length =06
Contents = Identifier = 02 — — Universal 2
lengh = 0l
Contents = 00 - - major
identifier = Q2 - == Univarsal 2
length = O]
Centents = 00 - - minor
Identifier = A2
length =03
Conterts = Identifier =02
length =01
Contents = 01 - - servicelype = user coneclable
identifier = A3
length =03
Contents = |dentifier = 02
lengh =01
Contents = 01 - — serviceClass = aecess
Identifier = A4 - — Contextspecific 4 = functionalUnis
tength , =03
Contents = Identfier = 03 - = Universal 3 = BITSTRING
lengh =01
Conents = EQ - —read, write, fileAccess = 1110 000
identifier = A5 - = Contextspecific 5 = aribureGroups
length =03
Contents = identifier =03
lengh =01
Contents = 40 - — security 3100 000
ldentiber = A6 - - Contextspecific & = rolibackAvailability
length = 23
Contents = |dentfier = 01 - - Universal 1 = BOOIEAN
length =01
Contents = FF - — hue
Identifier = A7 - = Contextspecific 7 = PresenrationContextName
length =07
Conterts = 49 53 4F 38 38 32 32 -~ "508822"

Concrete syntax of the above PDU s thus.

61 2F A0 03 02 01 00 Al 06 02 01 CO 02 Ol QC A2
03 02 01 01 A3 03 02 Q1 Ol A4 03 02 O EO A5 02
03 0) 40 A6 03 01 Ol FF A7 07 49 53 32 38 38 32
32

Figure 13.7 Continued



13.3

13.4

13.4 Data encryption | 867

1 = FINITIALIZErequest. Clearly, since each PDU has a unique structure, we
must have a separate decoding procedure for each PDU type. Hence, on
determining the type of PDU received, the corresponding decoding proce-
dure is invoked. Once this has been done, the various fields (data elements)
making up the PDU will be in their local {abstract} syntax form and process-
ing of the PDU can start. Thus in the example, the various context-specific
tags are used to determine the field within the PDU and the appropriate
decoded value - now in its local syntax  is then assigned to this.

Security

As we indicated in the introduction, increasingly people are using networks
such as the Internet for on-line banking, shopping, and many other applica-
tions. The generic term used is electronic commerce or e-commerce and this
often involves the transfer of sensitive information such as credit card details
over the network. Hence to support this type of networked transaction, a
number of security techniques have been developed which, when combined
together, provide a high level of confidence that any information relating to
the transaction that is received from the network:

has not been altered in any way — integrity;
has not been intercepted and read by anyone ~ privacy/secrecy,;
has come from an authorized sender — authentication;

has proof that the stated sender initiated the transaction — nonrepudiation.

Below we shall describe a number of the techniques that are used to
carry out these four functions. As we shall see, secrecy and integrity are
achieved by means of data encryption while authentication and nonrepudia-
tion require the exchange of a set of (encrypted) messages between the two
communicating parties. We shall give some examples of applications that use
these techniques later in Chapters 14 and 15.

Data encryption

As the knowledge of computer networking and protocols has become more
widespread, so the threat of intercepting and decoding message data during
its transfer across a network has increased. For example, the end systems (sta-
tions/ hosts) associated with most applications are now attached to a LAN.
The application may involve a single LAN or, in an internetworking environ-
ment, the Internet. However, with most LANs, transmissions on the shared
transmission medium can readily be intercepted by any system if an intruder
sets the appropriate MAC chipset into the promiscuous mode and records all
transmissions on the medium. Then, with a knowledge of the LAN protocols
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13.4.1

being used, the intruder can identify and remove the protocol control infor-
mation at the head of each message, leaving the message contents. The
message contents, including passwords and other sensitive information, can’
then be interpreted.

This is known as listening or eavesdropping and its effects are all too obvi-
ous. In addition and perhaps more sinister, an intruder can use a recorded
message sequence to generate a new sequence. This is known as masquerad-
ing and again the effects are all too apparent, Therefore, encryption should
be applied to all data transfers that involve a network. In the context of the
TCP/IP reference model, the most appropriate layer to perform such opera-
tions is the application layer. This section provides an introduction to the
subject of data encryption.

Terminology

Data encryption (or data encipherment) involves the sending party - for
example, the application protocel entity — in processing all data prior to
transmission so that if it is accidentally or deliberately intercepted while it is
being transferred it will be incomprehensible to the intercepting party. Of
course, the data must be readily interpreted — deycrypted or deciphered - by
the intended recipient. Consequently, most encryption methods involve the
use of an encryption key which is hopefully known only by the two correspon-
dents. The key features in both the encryption and the decryption
processing. Prior to encryption, message data is normally referred to as plain-
text and after encryption as ciphertext. The general scheme is illustrated in
Figure 13.8.

When deciding on a particular encryption algorithm we must always
assume that a transmitted message can be intercepted and recorded, and that
the intruder knows the context in which the messages are being used, that is,

Plaintext, P Plaintext, P

Decryption
key, Dy

Encryplion
key, B,

Listening/ .
l eavesdropping T lN\quuerodmg

[ Compter network

_—
Ciphertext C = E, [P}

Figure 13.8 Data encryption terminology.
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the type of information being exchanged. The aim is to choose an encryption
method such that an intruder, even with access to a powerful computer,
cannot decipher the recorded ciphertext in a realistic time period. There are
two widely used algorithms but before we discuss them, let us consider some
of the more fundamental techniques on which they are hased,

Basic techniques

The simplest encryption technique involves substituting the plaintext alpha-
bet (codeword) with a new alphabet known as the ciphertext alphabet. For
example, a ciphertext alphabet can be defined which is the plaintext alpha-
bet simply shifted by n places where n is the key. Hence, if the key is 3, the
resulting alphabet is as follows:

Plaintext alphabet: abcdefg...
Ciphertext alphabet: defghij...

The ciphertext is obtained by substituting each characier in the plaintext
message by the equivalent letter in the ciphertext alphabet.

A more powerful variation is to define a ciphertext alpbabet that is a
random mix of the plaintext alphabet. For example:

Plaintext alphabet abcdefg...
Ciphertext alphabet: nzgqaiym...

The key is determined by the number of letters in the alphabet, for example,
26 if just lower-case alphabetic characters are to be transmitted or 128 if, say,
the ASCII alphabet is being used. There are therefore 26! = 4 x 10%® possible
keys with the first alphabet or many times this with the larger alphabet.
Notice that in general, the larger the key the more time it takes to break
the code.

Although this may seem to be a powerful technique, there are a number
of shortcuts that can be used to break such codes. The intruder is likely to
know the context in which the message data is being used and hence the type
of data involved. For example, if the messages involve textual information,
then the statistical properties of text can be exploited: the frequency of
occurrence of individual letters (e, t, 0, a, and so on}, are all well docu-
mented. By performing statistical analyses on the letters in the ciphertext
such codes can he broken relatively quickly.

Substitution involves replacing each character with a different character,
so the order of the characters in the plaintext is preserved in the cipher it
An alternative approach is to reorder (transpose) the characters in the plain-
text. For example, if a key of 4 is used, the complete message can first be
divided into a set of 4-character groups. The message is then transmitted
starting with all the first characters in each group, then the second, and so
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on. As an example, assuming a plaintext message of “this is a lovely day”, the
ciphertext is derived as follows:

I 2 3 4 e key

t h i ]
- i s -
a - 1 o]
v e 1 y
- d a y

Ciphertext = t-av—hi—edisllas—oyy

Clearly, more sophisticated transpositions can be performed but, in gen-
eral, when used alone transposition ciphers suffer from the same shortcomings
as substitution ciphers. Most practical encryption algorithms tend to use a com-
bination of the two techniques and are known as product ciphers.

Product ciphers

These use a combination of substitutions and transpositions. Also, instead of
substituting/transposing the characters in a message, the order of individual
bits in each character (codeword) is substituted/ transposed. The three alter-
native transposition (also known as permutation) operations are shown in
Figure 13.9(a). Each is normally referred to as a P-box.

The first involves transposing each 8-bit input into an 8-bit output by
cross-coupling each input line to a different output line as defined by the key.
This is known as a straight permutation. The second has a larger number of
output bits than input bits; they are derived by reordering the input bits and
passing selected input bits to more than one output. This is known as an
expanded permutation.

The third has fewer output bits than inputs; it is formed by transposing
only selected input bits. This is known as a compressed or choice permutation.

To perform a straight substitution of 8 bits requires a new set (and hence
key) of 28 (=256) 8-bit bytes to be defined. This means the key for a single
substitution is 2048 bits. To reduce this, a substitution is formed by encapsu-
lating a P-box between a decoder and a corresponding encoder, as shown in
Figure 13.9(b). The resulting unit is known as an S-box. The example per-
forms a 2-bit substitution operation using the key associated with the P-box.
An 8-bit substitution will require four such units.

Product ciphers are formed from multiple combinations of these two
basic units, as shown in Figure 13.10. In general, the larger the number of
stages the more powerful the cipher. A practical example of product ciphers
is the data encryption standard (DES) defined by the US National Bureau of
Standards. This is now widely used. Consequently, various integrated circuits
are available to perform the encryption operation in hardware thereby
speeding up the encryption and decryption operations.
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a i | — 1
(a) {i) ) )
2] re—— 4 staight
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2 - 2 lkey = 25817463
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Figure 13.9 Product cipher components: (a) P-hox examples; (b) S-box
example.
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13.4.3

8-bit 8-bit
plointext < P, . > cipheriext
character ' character

Figure 13.10 Exampie of a product cipher.

The data encryption standard

The DES algorithm is a block cipher, which means that it works on fixed-sized
blocks of data. Thus, a complete message is first split (segmented) into blocks
of plaintext, each comprising 64 bits. A (hopefully} unique 56-bit key is used
to encrypt each block of plaintext into a 64-bit block of ciphertext, which is
subsequently transmitted through the network. The receiver uses the same
key to perform the inverse (decrpytion) operation on each 64-bit data block
it receives, thereby reassembling the blocks into complete messages.

The larger the number of bits used for the key, the more likely it is that the
key will be unique. Also, the larger the key, the more difficult it is for someone
to decipher it. The use of a 56-bit key in the DES means that there are in the
order of 1017 possible keys from which to choose. Consequently, DES is
regarded as providing sufficient security for most commercial applications.

A diagram of the DES algorithm is shown in Figure 13.11(a}. The 56-bit
key selected by the two correspondents is first used to derive 16 different sub-
keys, each of 48 bits, which are used in the subsequent substitution operations.
The algorithm comprises 19 distinct steps. The first step is a simple transposi-
tion of the 64-bit block of plaintext using a fixed transposition rule. The
resulting 64 bits of transposed text then go through 16 identical iterations of
substitution processing, except that at each iteration a different subkey is used
in the substitution operation. The most significant 32 bits of the 64-bit output
of the last iteration are then exchanged with the least significant 32 bits.
Finally, the inverse of the transposition that was performed in step 1 is carried
out to produce the 64-bit block of ciphertext to be transmitted. The DES algo-
rithm is designed so that the received block is deciphered by the receiver
using the same steps as for encryption, but in the reverse order.

The 16 subkeys used at each substitution step are produced as follows,
Firstly, a fixed transposition is performed on the 56-bit key. The resulting
transposed key is then split into two separate 28-bit halves. Next, these two
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(a) &4-bit plaintext

56-bit key

16 subkeys each of 48 bits

64-bit ciphertext

(b)
&4-bit output rom previous stage
LA SR JIN £ A }

Subkey for this stoge

—
&4-bit output 1o next stoge

Figure 13.11 DES algorithm principles: (a) overall schematic;
(b) substitution schematic; (c) substitution aperation.

halves are rotated left independently and the combined 56 bits are then
transposed once again using a compression operation to produce a subkey of
48 bits. The other subkeys are produced in a similar way except that the
number of rotations performed is determined by the number of the subkey.
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(c)

64-bit output from previcus stage, x--1
AL

.
&d-hit output to next stage, x

Figure 13.11 Continued.

The processing performed at each of the 16 intermediate substitution
steps in the encryption process is relatively complex as it is this that ensures
the effectiveness of the DES algorithm. This processing is outlined in Figure
13.11(b). The 64-bit output from the previous iteration is first split into two
32-bt halves. The left 32-bit output is simply the right 32-bit input. However,
the right 32-bit output is a function of both the left and right inputs and the
subkey for this stage. The principle is shown in Figure 13.11(c).

As we can deduce from the figure, in the forward (encryption) direction:

Lx: Rx—l

and

sz Lx—l @fn (Rx— 1! Kx)

where £, 18 a bitwise function called the Feistel cipher. First, since the subkey
for the stage, K, is 48 bits, R_| is expanded into a 48-bit value using a P-box —
similar o that shown in part (ii) of Figure 13.9(a) - with a fixed key. This is
then exclusive-ORed with K and the 48-bit output is then converted back
again into a 32-bit value. This is done by first dividing the 48-bit value into
eight 6-bit groups and then passing each group through an S-box — similar to
that shown in Figure 13.9(b) - each with a different key. In this case, however,
the internal P-box performs a compression operation by transposing the 64
bit output from the 6-to-64 decoder into 16 bits. The resulting 16 bits are
then passed to a 16-to-4 bit encoder to produce a 4-bit value. The 4-bit output
from each of the eight S-boxes is then combined to form a 32-bit value which
is passed through a second (straight) P-box to produce the output of the
function block (f).
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As we indicated earlier, the DES algorithm is designed so that the
received block is deciphered by the receiver using the same steps as for
encryption, but in the reverse order. As we can deduce from Figure 13.11(a),
since transposition 1 is the inverse of transposition 3 and transposition 2 is a
simple swap operation, by passing the received input through the stack in the
reverse direction the output at the top will be the original plaintext. This is
only true of course, if passing the 64-bit block through each substitution
operation in the reverse direction also produces the inverse of that produced
in the forward direction.

To illustrate that the Feisel cipher has this property, as we can deduce
from Figure 13.11(c), in the reverse (decryption) direction:

R, ;=L

X
and
L’x—l = Rx ®L(Lx' Kx)
Hence, since I._=R__,, the output of the Feisel cipher ~ and hence each sub-
stitution operation — is invertible.
For example, if we work with two 4-bit groups and assume f, is a simple
exclusive OR operation with a key, K, of 1011, then if:

L _,=1001 and R__,=0110
in the forward (encryption} direction:
L_=0110 and R, =0100
And in the reverse (decryption) direction:
R, _,=0110 and L, ,=1001

which, as we can see, are the same as the two original inputs.

Triple DES
Although DES is still widely used, the use of a 56-bit key means that, with
increasingly powerful computers, the time taken to exhaustively try each
of the possible keys is reducing steadily. To counter this, a variant called
triple DES has been developed. The principle of the scheme is shown in
Figure 13.12.

As we can see, the scheme involves the use of two keys and three execu-
tions of the DES algorithm. Key K, is used with the first (DES) block, K, with
the second block, and K, again with the third block. The use of two keys gives
an effective key length of 112 bits and, because of this, the scheme is now
widely used in many financial applications.
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Key = K, K,

&4-bit
ciphertext

Ha-bit

plaintext

Figure 13.12 Triple DES schematic.

Chaining

The basic mode of working of DES is known as electronic code book (ECB)
since each block of ciphertext is independent of any other block. Thus each
64-bit block of ciphertext has a unique matching block of plaintext, which is
analogous to entries in a code book. The ECB mode of working is shown in
Figure 13.13(a).

As we can deduce from Figure 13.11, the ECB mode of operation of DES
has good secrecy properties and gives good protection against errors or
changes that may occur in a single block of enciphered text. It does not, how-
ever, protect against errors arising in a stream of blocks. Since each block is
treated separately in the ECB mode, the insertion of a correctly enciphered
block into a transmitted stream of blocks is not detected by the receiver; it
simply deciphers the inserted block and treats it as a valid block.
Consequently, the stream of enciphered blocks may be intercepted and
altered by someone who knows the key without the recipient being aware that
any meodifications have occurred. Also, if the order of the blocks is changed
in some way ‘then this will not be detected. The ECB mode, therefore, has
poor integrity properties, Hence to obtain integrity as well as secrecy, an alter-
native mode of operation of DES based on a technique called chaining is
often used. It is called the chain block cipher (CBC) mode and is shown in
Figure 13.13(b).

As we can see, although the chaining mode uses the same block encryp-
tion method as previously described, each 64-bit block of plaintext is first
exclusive-ORed with the enciphered output of the previous block before it is
enciphered. The first 64-bit block of plaintext is exclusive-ORed with a 64-bit
random number called the initial vector, which is sent prior to the cipher
text. Then, after the first block has been encoded/decoded using this, subse-
quent blocks are encoded/decoded in the chained sequence shown in the
figure. Thus, since the output of each block is a function both of the block
contents and the output of the previous block, any alternations to the trans-
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(a)
Plaintext Plaintext
(P} i
{b)
o4-bit
plaintext
{P}
Initial vector
&4-bit
plaintext
{P)

(%) = 64 %OR gates

Initial vector

Figure 13.13 DES operational modes: (a) electronic code book (ECB); (b} chain block cipher
(CBC); (c) cipher feedback mode (CFM).
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(c) O/P register Key 1/P shift register
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8-bit
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Figure 13.13 Continued.

mitted sequence can be detected by the receiver so giving a high level of
integrity. Also, identical blocks of plaintext yield different blocks of cipher-
text which makes the breaking of the code much more difficult. For these
reasons, this is the mode of operation normally used for digital communica-
tion applications.

Since the basic CBC mode operates with 64-bit blocks, all messages must
be multiples of 64 bits. Otherwise padding bits must be added. However, as
we have seen in earlier chapters, the contents of all messages consist of strings
of octets, so the basic unit of all messages is 8 bits rather than 64. An alterna-
tive mode of DES known as the cipher feedback mode (CFM) has also been
defined which operates on 8-bit boundaries. A schematic of the scheme is
shown in Figure 13.13(c).
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With this mode, a new DES encryption operation is performed after
every 8 bits of input rather than 64 with the CBC mode. A new 8-bit output is
also produced which is the least significant 8 bits of the DES output, exclu-
sive-ORed with the 8 input bits. Then, after each 8-bit output has been loaded
into the output buffer, the 64-bit contents of the input shift register are
shifted by 8 places. The 8 most significant bits are thus lost and the new 8-bit
input is loaded into the least significant 8 bits of the input shift register. The
DES operation is performed on these new 64 bits and the resulting 64-bit
output is loaded into the output register. The least significant 8 bits of the
latter are then exclusive-ORed with the 8 input bits and the process repeats.
CFM is particularly useful when the encryption operation is being per-
formed at the interface with the serial transmission line. This mode of
operation is used with the DES integrated circuits; each new 8-bit output is
loaded directly into the serial interface circuit.

IDEA

The international data encryption algorithm (IDEA) is another block cipher
method that is similar in principle to DES since it also operates on 64-bit
blocks of plaintext. It can also be used, therefore, in the various chaining
modes we described in the last section. To obtain added resilience, however,
it uses a 128bit key and more sophisticated processing during each phase of
the encryption operation. Also, it has been designed so that it can be imple-
mented equally well in both hardware and software and, in particular, with
16-bit microcomputers. A schematic diagram of the encryption operation is
shown in Figure 13.14(aj.

As we can see, each 64-bit block of plaintext passes through a series of
eight bit-manipulation iterations followed by a final transposition. At each of
the eight iterations, each of the 64 output bits is a function of all 64 input
bits. The various processing operations that are carried out to achieve this are
shown in Figure 13.14(b).

The 128-bit key is first used to generate 52 subkeys each of 16 bits. As we
can see in the figure, six subkeys arc used at each iteration and the remaining
four subkeys are used in the final transposition stage. Decryption uses the
same algorithm but with a modified set of keys.

Each 64-bit input is first divided into four 16-bit words each of which goes
through a series of multiplication, addition, and exclusive-OR operations. All
the lines shown in the figure are 16 bits and all the multiplication operations
involve first the 32-bit product of the two 16-bit inputs being computed and
then dividing this by 2'% + 1. The output is then the 16-bit remainder. In the
case of the addition operations, the two 16-bit inputs are added together and
any carry that is generated is ignored.
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(a)

(b)

&64-bit plaintext

&4-bit ciphertext
64bit input

128-bit
key

-

64-bit outpul
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Figure 13.14 1DEA: (a) encryption schematic; (h) single iteration

detail.

= 16 % 16 exclusive OR
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13.4.5 The RSA algorithm

Both DES and IDEA rely, of course, on the same key being used for both
encryption and decryption. An obvious disadvantage is that some form of key
notification must be used before any encrypted data is transferred between
two correspondents. This is perfectly acceptable as long as the key does not
change very often, but in fact it is common practice to change the key on a
daily, if not more frequent, basis. Clearly, the new key cannot reliably be sent
via the network, so an alternative means, such as a courier, must be used. The
distribution of keys is a major problem with private key encryption systems. An
alternative method, based on a public rather than a private key, is sometimes
used to overcome this problem. The best known public key method is the RSA
algorithm, named after its three inventors: Rivest, Shamir, and Adelman.

The fundamental difference between a private key system and a public
key system is that the latter uses a different key to decrypt the ciphertext from
the key that was used to encrypt it. A public key system uses a pair of keys: one
for the sender and the other for the recipient.

Although this may not seem to help, the inventors of the RSA algorithm
used number theory to develop a method of generating a pair of numbers -
the keys — in such a way that a message encrypted using the first number of
the pair can be decrypted only by the second number. Furthermore, the
second number cannot be derived from the first. This second property means
that the first number of the pair can be made available to anyone who wishes
to send an encrypted message to the holder of the second number since only
that person can decrypt the resulting ciphertext message. The first number
of the pair is known as the public key and the second the private or secret
key. The principle of the method is shown in Figure 13.15.

As indicated, the derivation of the two keys is based on number theory
and is therefore outside the scope of this book. However, the basic algorithm
used to compute the two keys is simple and is summarized here together with
a much simplified example.

Source, S Receiver, R

R's pub i key R R's secret key R,

Plaintext, P

Plaintext, P = RyR{PIl

I

Ciphertext = R.[P)

Figure 13.15 RSA schematic.
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—

To create the public key Iﬂ): Example:

W select two large positive prime numbers Pand @ P=7, Q=17
B compute X=(P-1) x (Q-1) . X=96
M choose an integer E which is prime relative

to X, i.e., not a prime factor of X or a multiple
of it, and which satisfies the condition

indicated below for the computation of K, E=5
B compute N=Px N=119
[ ] Kp is then N concatenated with E KP =119,5

To create the secret key K

H compute D such that MOD (Dx E, X) = 1 Dx5/96=1,D="77
W K is then N concatenated with D K, =119, 77

To compute the ciphertext C of plaintext P:

M treat Pas a numerical value P=19
H C=MOD (PEN C=MOD (19, 119) C=66

To compute the plaintext P of ciphertext G

H P=MOD (G2, N P=MOD (6677, 119)
P=19

The choice of Eand D in this example is best seen by considering the factors
of 96. These are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48. The list of numbers which
are prime relative to 96 are thus 5, 7, 9, 10, 11, and so on. If we try the first of
these, E =5, then there is also a number D = 77 which satisfies the condition
MOD (D x E, X) =1 and hence these are chosen.

We can deduce from this example that the crucial numbers associated
with the algorithm are the two prime numbers Pand Q, which must always be
kept secret. The aim is to choose a sufficiently large N'so that it is impossible to

factorize it in a realistic ime. Some example (computer) factorizing times are:

N=100 digits = 1 week
N= 150 digits =~ 1000 years
N> 200 digits =~ 1 millicn years

The RSA algorithm requires considerable computation time to compute
the exponentiation for both the encryption and decryption operations.
However, there is a simple way of avoiding the exponentiation operation by
performing instead the following algorithm which uses only repeated multi-
plication and division operations:
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C:=1

begin fori=1to E do
C:=MOD (CxP,N)
end

Decryption is performed in the same way by replacing E with D and P
with C in the above expression; this yields the plaintext P. For example, to
compute C=MOD (195, 119):

Stepl: C=MOD (1x19,119} =19
2:C=MOD (19 x19,119) = 4
3:C=MOD (4x19,119) =76
4: C=MOD (76 x 19, 119) = 16
5 C=MOD (16 x 19, 119} = 66

Note also that the value of N determines the maximum message that can
be encoded. In the example this is 119 and is numerically equivalent to a
single ASCII-encoded character. Therefore, a message comprising a string of
ASCII characters would have to be encoded one character at a time.

Although a public key system offers an alternative to a private key system
to overcome the threat of eavesdropping, if the public key is readily available
it can be used by a masquerader to send a forged message. The question then
arises as to how the recipient of a correctly ciphered message can be sure that
it was sent by a legitimate source. As we indicated earlier, this relates to
authentication and nonrepudiation and there are a number of solutions to
this problem.

Nonrepudiation

Public key systems like RSA are particularly useful for nonrepudiation; that is,
proving that a person sent an electronic document. With a paper document,
normally a person adds his or her signature at the end of the document -
sometimes with the name and signature of a witness — and, should it be neces-
sary, this is then used to verify that the person whose signature is on the
document sent it.

One solution is to exploit the dual property of public key systems, namely
that not only is a receiver able to decipher all messages it receives (which
have been encrypted with its own public key) using its own private key, but
any receiver can also decipher a message encrypted with the sender’s private
key, using the sender’s public key,

Figure 13.16(a) shows how this property may be exploited to achieve non-
repudiation. Encryption and decryption operations are performed at two levels.
The inner level of encryption and decryption is as already described. However, at
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Figure 13.16 Nonrepudiation using RSA: (a) on complete message; (k) on message digest.

the outer level, the sender uses its own private key to encrypt the original (plain-
text) message. If the receiver can decrypt this message using that sender’s
public key, this is proof that the sender did in fact initiate the sending of the
message. The scheme is said therefore to produce a digital signature.
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Although this is an elegant solution, it has a number of limitations.
Firstly, the processing overheads associated with the RSA algorithm are high.
As we saw with the earlier (much simplified) example, even with a small mes-
sage (value), the numbers involved can be very large. Therefore a complete
message must be divided into a number of smaller units, the size of which is a
function of the computer being used. Hence, even though integrated circuits
are available to help with these computations, the total message throughput
with RSA is still relatively low. Secondly, the method requires two levels of
encryption even though it may not be necessary to encrypt the actual mes-
sage, that is, although only nonrepudiation is required, the actual message
contents must still be encrypted.

One solution is to compute a much shorter version of the message based
on the message contents, similar in principle to the computation of a CRC.
The shorter version is called the message digest (MD) and the computation
function that is used to compute it the hash function. The principle of the
scheme is shown in Figure 13.16(b).

The MD is first computed using the chosen hash function. This is then
encrypted using the sender’s private key. The encrypted MD is then sent
together with the plaintext message. At the receiver, the encrypted MD is
decrypted using the sender’s public kev. The MD of the received plaintext
message is also computed and, if this is the same as the decrypted MD, this is
taken as proof that no one has tampered with the message and the sender
whose public key was used to decrypt the MD did in fact send the message.

There are two widely used schemes that use this approach. One is called
MD5, which was designed by Rivest, and the other the secure hash algorithm
(SHA) which is a US government scheme. Both schemes operate on 512-bit
blocks of plaintext. In the case of MD5 the computed MD is 128 bits long and
for SHA, 160 bits long. As we shall see in the following chapters, MD5 is
widely used with Internet applications and, because of its origin, SHA is used
in government applications.

Authentication

In general, authentication is required when a client wishes to access some
information or service from a nerworked server. Before the client is allowed
access to the server, he or she must first prove to the server that they are a
registered user. Once authenticated the user is then allowed access. The
authentication process can be carried out using either a public key or a pri-
vate key scheme. We shall give an example of each approach.

Using a public key system

The general principle of a scheme that is based on a public key system is
shown in Figure 13.17. The scheme assumes that all potential users know the
public key of the server, Sp. The client first creates a message containing the
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Figure 13.17 User authentication using a public key scheme.

client’s user name, U, the client’s public key, C , and a time-stamp, . The
latter indicates when the message was created and a record of this is kept by
the client. The message is then encrypted using S, and sent to the server (1).

The server first decrypts the message usmg its own secret key, S, and
then proceeds to validate that there is such a registered user from the user
name, U. Assuming this is the case, it then proceeds to create a response mes-
sage comprising the client’s user name, U, and time-stamp, t, plus a second
rime-stamp indicating when the response was created by the server, t. The
server keeps a record of this and encrypts the message using the client’s
public key, C. It then sends the encrypted message to the client (2).

On recelpt of the response, the client first decrypts the message using its
own secret key, G, and, on determining that the t_within it is the same as it
sent, assumes that it has been authenticated by the server. It then proceeds to
acknowledge this by creating a second message containing the client’s user
rame, U, and the server's time-stamp, t. This again is encrypted using the
server’s public key, S, and sent to the server (3). The server decrypts this
using its own secret kex S, and, on determining the t within it is the same as
it sent, prepares to accept service requests from the client.

Note that in both cases, if the time the message was received exceeds the
time-stamp value in the related response message by more than a defined
time interval, then the message is discarded and access remains blocked.
Also, should the transaction require the subsequent messages to be
encrvpted, then the key to be used would be returned by the server in mes-
sage (2).

Using a private key system

An example of a method that is based on a private key system is Kerberos.
This is widely used in many practical systems and, as we shall see, the method
requires a trusted third party to act as a key distribution server.

The basic security control mechanism employed in Kerberos is a set of
encrypted tickets — also known as control or permission tokens — which are
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used to control access to the various servers that make up the system. These
include a range of application servers - file servers, electronic mail servers,
and so on - and the system server that issues the tickets is known as the ticket
granting server. All messages that are exchanged between a user and the
ticket granting server and between a user and an application server, are
encrypted using private keys which form part of the corresponding ticket. In
addition, each message/ticket has a nonce associated with it. This comprises
two date-and-time values the first of which specifies when the nonce was first
generated. A nonce is used both to verify the origin of a message and to limit
the validity of a ticket to a defined lifetime. This is determined by the second
date-and-time value in the nonce. This feature means an eavesdropper has
only a limited time to decrypt an intercepted ticket,

The key distribution server is a networked system with which all users and
application servers must be registered. It comprises two servers: an authenti-
cation server and a ticket granting server. The authentication server provides,
firstly, management services to allow all users, together with their related
passwords, to be registered. It also provides the names and secret keys of all
Kerberos servers, including the ticket granting server and all application
servers. This information is retained in an authentication database. [t then
provides additional runtime services to enable a user to be authenticated as a
registered user of the system before being allowed to access any of the
Kerberos servers. A schematic diagram summarizing the various interactions
between a user and the two types of server is given in Figure 13.18(a).

Running within each client workstation is a process called the user agent
and it is through this that all interactions between a user and the various
Kerberos servers take place. Before a user (agent) can access an application
server, it must first obtain from the ticket granting server an authentication
ticket and a session key; the first verifies that the user has been authenticated
as a registered user and the second is used to encrypt all the subsequent
dialog units that are exchanged in this session between the user agent and
the application server. Note that in practice more than one application server
can be involved in a single session. Also, both keys have a limited lifetime
associated with them to guard against a user, whose registration has expired
for example, from reusing a ticket.

At the start of a session, the user is prompted by the user agent (UA) for
his/her user name (1). Before the UA can communicate with the ticket
granting server (TGS), the user must first be authenticated as a registered
user and a (permission) ticket obtained to access the TGS. Both these func-
tions are performed by the authentication server (AS). On receipt of the user
name, the UA creates a message containing the names of the user and the
TGS and a nonce. The UA keeps a record of the nonce used and sends the
message {0 the AS (2).

All subsequent messages associated with the session are encrypted using
various keys. These are defined in Figure 15.18(b} together with the compo-
nents that make up the two tickets; the first granting permission for the UA
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to communicate with the TGS and the second for the UA to communicate
with the application server, The contents of the messages exchanged during a
successful session are listed in Figure 13.18(c).

On receipt of the initial UA request message, the AS first validates the
user is registered and, if positive, proceeds to create a response message. The
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Figure 13.18 User authentication using Kerheros: (a) terminology and message exchange;
(b) key and ticket definitions; (c) message contents.
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latter comprises two parts. The first part consists of a newly generated session
kev, K,y — to be used to encrypt the subsequent UA/TGS dialog units -
together with the nonce, n|, contained in the initiak UA request message. A
record is kept of K. and this part of the response message 1s then encrypted
using the user’s password, K, — obtained from the authentication database ~
as a key. The second part comprises the permission ticket for the UA to access
the TGS, T, — encrypted using the private key of the TGS, Ky The two-part
message is then returned to the UA (3).

At this point the UA prompts the user to enter his/her password, K, (4).
The latter is then used to obtain. firstly, the nonce, i) — which verifies the
message relates to its earlier request — and secondly, the key K. Clearly, a
user impersonating as the registered user would not be able to decrypt this
message and hence would be foiled at this stage. The UA then proceeds to
use the retrieved key, K., to create what is referred to as an authenticator.
This is a token which verifies the user has been authenticated and comprises
the user name, U, and a time-stamp, t, both encrypted using K .. To this is
added the encrypted permission ticket, T, the name of the required appli-
cation server, 8, and a second nonce, n,. The complete message is then sent
to the TGS (5).

The authenticator is decrypted by the TGS using the retained key K¢
and, since this was granted for the same user, U, it is accepted by the TGS as
proof that the user has permission to be granted a session key o communi-
cate with an application server. In responsc. the TGS gencrates a new session
key, K g to be used by UA to encrypt the dialog units exchanged with the
named server, 8. Note that if multiple servers were to be accessed during the
session, then multiple keys are issued at this stage, one for use with each
server. The TGS then creales a message, the first part comprising K, ond the
nonce n, — encrypted using K. — and the second coraprising an encrypted
permission ticket for the UA to access B, T, . The complete message is then
sent to the UA (6).

On receipt of this, the UA uses K| to decrypt the first part of the mes-
sage (o obtain K and the nouce n,. The latter is used to confirm the
message relates to its own earlier request message to the TGS, and K. is used
to create an authentcator, which verifies the user has been granted DErmis-
sion to access the named server. The authenticator is then combined with the
permission ticket granted by the TGS, T, and a third nonce n,. The result-
ing message is then sent by the UA to server S (7).

As Figure 13.18(h) shows, the permission ticket, T\, 1s encrypted using
the private key of S, K. Hence, on receipt of the message, S proceeds to use
its own private key to deerypt T and obtain the name of the user, U, and the
allocated session key, K ... It uses the latter to decrypt the authenticator and
confirm that U has been authenticated as a registered user and granted per-
mission to access S. The server responds by returning the nonce, n,,
encrypted using K., (8). This concludes the authentication procedure and
the exchange of data messages between UA and S can now commence. If
required, the data messages are encrypted using K.



890 ‘ Chapter 13 Apptication support functions

13.7 Public key certification authorities

In the examples in previous sections that used the RSA public key scheme it
was assumed that the public key was obtained in some way; for example by
sending it in an email message prior to the transfer or making it available in a
Web page. However, sending a public key in this way without any supporting
proof of identify has potential drawbacks. The example shown in
Figure 13.19 illustrates one of these.

In this example it is assumed that the person sending the message wants
to discredit the person whose name is on the message. To do this, he or she
sends a message that will achieve this in such a way that the recipient thinks
the message has been sent by the person whose name is on it. To avoid this
type of misuse of public key systems, in most applications the public key is
obmained from a recognized certification authority (CA).

When a person registers with a recognized CA, after careful checks, an
electronic certificate is created by the CA. This contains, in addition to the
public key of the owner of the certificate, other information about the owner.
The IETF have defined the complete list of contents of a certificate in RFC
1422 and this is now used widely by a number of CAs. The fields present
include:

P, S /MD]

P
A
Impersonator prepares a —— Recipient uses the public key
plaintext message with a ? of the impersonator fo decrypt
sender's name that of the the message and assumes it has
person he/'she s impersenating Impersonator sends public key, S been sent by the person whose
in an email and gives the name s in the plaintext message

name of the sender of the email as
that in the pleintext message

Figure 13.19 A possible threat when using a public key system.
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B - issuer name: the identify (called the distinguished name) of the CA in a
syntax defined in RFC 1779;

¥ serial number: the unique identifier of the certificate;

B subject name: the identity of the owner of the certificate, for example, an
email address, a URL. of 2 Web server, or an IP address of, say, a router;

B public key: the owner’s public key and the key algorithm, for example
RSA;
B validity period: start and end date of the validity of the certificate:

B signature: the algorithm used by the CA to encrypt the certificate
contents, for example RSA,

Once a certificate has been created, the public key it contains can only be
accessed through the CA. Typically, the CA is on a list of recognized CAs. The
list is located at a well-known Web site and, for each CA on the list, its location
and its public key are given. Then, when a public key is required from the
CA, the subject’s name is submitted and, in response, the CA returns the
related certificate. The recipient proceeds to decrypt the contents of the cer-
tificate using the public key of the CA. It then reads the public key from the
certificate and, before using it, validates that the name of the person on the
certificate is that whose key is required.

In this chapter we have discussed two topics that are used widely in a range of
distributed/networked applications. The first is concerned with ensuring that
the shared information relating to a distributed application has the same mean-
ing in all the computers/items of equipment that process the information. To
achieve this, an international standard called ASN.1 has been defined. As we
show in Figure 13.20, this comprises a standard abstract syntax that is used to
define the data types associated with the shared information and also a set of
encoding and decoding procedures that are used to convert the value associ-
ated with each data type into and from a standard transfer syntax.

The second topic relates to network security. This is concerned with four
interrelated issues: secrecy, integrity, authentication, and nonrepudiation. We
described the principle of operation of both the data encryption standard
(DES) and the RSA algorithm. The first is useful for providing both secrecy
and integrity and the second authentication and nonrepudiation. We also
described the Kerberos system which is 2 widely used system for authentication.
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Figure 13.20 Summary of topics discussed in Chapter 13.
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Section 13.1

13.1

Explain the meaning of the following terms

relating to a distributed application involving
multiple different computers:

(i}  data dictionary,

(ii) abstract syntax,

(iii} transfer/concrete syntax,

(iv) shared semantics.

Section 13.2

13.2

13.3

13.4

13.5

13.6

13.7

Explain the role of ASN.1 in relation to a dis-
tributed application and, with the aid of a
diagram, describe the functions performed
by an ASN.1 compiler.

Give an example variable name and ASN.1
type definition for each of the following prim-
itive data types:

(i)  boolean,

(ii} integer,

(iii) bitstring,

(iv) character string.

Give an example variable name and ASN.1
wype definition for a sequence constructed
type which includes the set of variables you
listed in Exercise 13.3.

Explain the meaning of the terms “tag”, “con-
text-specific”, and “application-specific”.
Hence modify the sequence type definition
you used in Exercise 13.4 to include three
context-specific tags and an application-
specific tag.

Explain the meaning and use of the terms
“implicit” and “explicit” in relation to a tag.
Hence modify the sequence type definition
you used in Exercise 13.5 to include a
number of implicit type definitions.

QOutline the role that ASN.1 can play in rela-
tion to the definition of the messages/PDUs
relating to a protocoi.

State an advantage and a disadvantage of
using ASN.1 as an alternative to defining a

13.8

13.9

13.10

13.11

message/PDU in the form of a number ot
fixed-ength fields.

With the basic encoding rules associated with
ASN.1, the transfer syntax used to transfer
the value of a variable consists of an identui-
fier, length, and contents field. Explain the
use of each of these fields and, in the case of
the identifier, the use of the class, type, and
tag subfields.

Use example value assignments for each of
the variables you defined in Exercise 13.3 to
illustrate how each data type is encoded.

Assuming the same value assignments you
used in Exercise 13.9, encode the two
sequence-type variables you defined in
Exercises 13.5 and 13.6.

Hence identify the benefits of using an
implicit tag.

As an example, use the second of the
encoded octet/byte strings you derived in
Exercise 13.10 to explain how the decoding
procedure in a correspondent application
process determines the value to be assigned
to each variable.

Section 13.3

13.12

Explain the meaning of the following terms
relating to a secure transaction:

(i)  integrit,

(ii) privacy/secrecy,

(1i1) authentication,

(iv) nonrepudiation.

Section 13.4

13.13

With the aid of a diagram, explain the mean-
ing of the following terms relating to data
encryption:

(i)  plaintext and ciphertext,

(ii)) encryption key and decryption key,

(iii} eavesdropping and masquerading.
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13.14

13.15

13.16

13.17

13.18

13.19
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The following encrypted phrase has been
produced using a simple substitution for the
ciphertext alphabet. Assuming the phrase
relates to communications, derive the cipher-
text alphabet and hence the plaintext of
the phrase:

ciphertext = frpsxwhu qhwzrunlgj

The following encrypted phrase has been
produced using a simple transposition for the
ciphertext alphabet. Derive the key that has
been used and hence the plaintext of
the phrase:

ciphertext = deniaoiotmennamas ut

By means of a diagram. show the difference
between a straight, expanded, and com-
pressed or choice permutation/transposition.
Use for example purposes a P-box with 8
input bits. State the key used in each case.

Assuming an S-box with 8 input bits, derive
the size of the key that is required to perform
a straight substitution operation.

With the aid of a diagram, show how the size
of the key can be reduced by encapsulating a
P-box between a binary decoder and a corre-
sponding encoder. Use for example purposes
an S-box with 2-input bits and 2-output bits.

Define a key for the P-box and hence list
the four outputs for the four possible combi-
nations of the two input bits.

A product cipher uses a combination of trans-
positions and substitutions. Design an
encryption unit based on a product cipher
that operates on 8 input bits. The unit is to be
composed of a straight P-box followed by a
block of 4 S-boxes of the type used in
Exercise 13.17 and a second straight P-box.
Define a suitable key for each stage. Hence
for a selected B-bit input, derive the 8-bit
encrypted output from the unit.

With the aid of a diagram, outline the struc-
ture of the product cipher used with the DES
algorithm. Show the steps that are carried out
for each substitution operation within the
product cipher assuming the bitwise function
used in each substitution is the Feistel cipher.

13.20

15.21

£3.22

13.23

13.24

13.25

13.26

State the three transposition operations that
are carried out in the DES product cipher
algorithm. Hence use a simple example to
show that the output of the set of three trans-
positions 1s reversible.

Use a simple example to show how each
substitution operation is reversible also. What
are the implications of this?

With the aid of a diagram, describe the oper-
ation of the triple DES scheme. Hence
explain why it is now being used in place of
DES in some applications.

With the aid of schematic logic diagrams,
describe the following operational modes of
DES: electronic code book (ECB), chain block
cipher (CBC), cipher feedback mode (CFM).
Quantify the number of encryption opera-
tions that are used to encrypt a 2048-byte

file using
(iy CBCand
(i) CFM.

Hence identify the main use of CFM.

With the aid of a schematic diagram, describe
the operation of the IDEA scheme. Include
in your description the size of the key used
and the number and size of the subkeys asso-
ciated with each encryption stage.

Each encryption stage in the IDEA scheme
involves multiple addition and multiplication
operations on pairs of 16-bit operands.
Explain how the 16-bit product and 16-bit
sum are derived.

With the aid of an example, explain the prin-
ciple of operation of the RSA algorithm
including how the public and private keys are
derived. Use for example purposes the two
prime numbers 3 and 11. State the maximum
numeric value that can be encrypted with
your choice of keys,

By means of an example, show how the expo-
nentiation operations associated with the
encryption and decryption stages of the RSA
algorithm can be avoided. Hence assuming
only messages composed of the 26 uppercase
characters are to be sent, encrypt the string of



characters AFKP using the public and private
keys you derived in Exercise 13.25. Remember
the limitation imposed by the choice of prime
numbers,

Section 13.5
13.27 With the aid of a diagram, show how nonre-

pudiation can be obtained using the RSA
algorithm:

(i) on the complete message,

(ii) on a digest of the message.

Clearly identify on your diagram the keys
used and the encrypted/decrypted values at
each stage.

Section 13.6
13.28 With the aid of a diagram, explain how user

authentication can be carried out using a
public key scheme. Include in your diagram

13.29

13.30

Exercises
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the contents of each message and the key
used to encrypt the message.

Explain the meaning and use of the following
terms in relation to the authentication proce-
dure associated with Kerberos:

(i) tckets,

(i) ticket granting server,

(iii} nonce,

(iv) authentication server,

(v) authentication database,

(vi} authenticator.

With the aid of a diagram, identify a possible
security threat that can occur with a public
key system when the public key is made read-
ily available. Describe how a certification
authority can be used to overcome this
threat. Include in your description a list of
the fields that are present in the certificate
and their use.
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14.1

Introduction

As we showed in Figure 12.1 and explained in the accompanying text, in the
TCP/1P protocol suite, given the IP address and port number of a destination
application protocol/process (AP), the services provided by TCP or UDP
enable two (or more) peer APs to communicate with each other in a transpar-
ent way. That is, it does not matter whether the correspondent AP (s) is{are)
running in the same computer, another computer on the same network, or
another computer attached to a network on the other side of the world. Also,
since neither TGP nor UDP examines the content of the information being
transferred, this can be a control message (PDU) associated with the applica-
tion protocol, a file of characters trom a selected character set, or a string of
bytes output by a particular audio or video codec. Hence application protocols
are concerned only with, firstly, ensuring the PDUs associated with the proto-
col are in the defined format and are exchanged in the specified sequence
and secondly, the information/data being transferred is in an agreed transfer
syntax so that it has the same meaning to each of the applications.

In this chapter, we discuss both the role and operation of a selection of
the application protocols associated with the Internet. These are the simple



